Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
The solution set must not contain duplicate triplets.
Given a string, find the length of the longest substring without repeating characters.
Example 1:
1 2 3
Input: "abcabcbb" Output: 3 Explanation: The answer is "abc", with the length of 3.
Example 2:
1 2 3
Input: "bbbbb" Output: 1 Explanation: The answer is "b", with the length of 1.
Example 3:
1 2 3 4
Input: "pwwkew" Output: 3 Explanation: The answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Given a list of strings, each string can be one of the 4 following types:
Integer (one round’s score): Directly represents the number of points you get in this round.
"+" (one round’s score): Represents that the points you get in this round are the sum of the last two valid round’s points.
"D" (one round’s score): Represents that the points you get in this round are the doubled data of the last valid round’s points.
"C" (an operation, which isn’t a round’s score): Represents the last valid round’s points you get were invalid and should be removed.
Each round’s operation is permanent and could have an impact on the round before and the round after.
You need to return the sum of the points you could get in all the rounds.
Example 1:
1 2 3 4 5 6 7 8
Input: ["5","2","C","D","+"] Output: 30 Explanation: Round 1: You could get 5 points. The sum is: 5. Round 2: You could get 2 points. The sum is: 7. Operation 1: The round 2's data was invalid. The sum is: 5. Round 3: You could get 10 points (the round 2's data has been removed). The sum is: 15. Round 4: You could get 5 + 10 = 15 points. The sum is: 30.
Example 2:
1 2 3 4 5 6 7 8 9 10 11
Input: ["5","-2","4","C","D","9","+","+"] Output: 27 Explanation: Round 1: You could get 5 points. The sum is: 5. Round 2: You could get -2 points. The sum is: 3. Round 3: You could get 4 points. The sum is: 7. Operation 1: The round 3's data is invalid. The sum is: 3. Round 4: You could get -4 points (the round 3's data has been removed). The sum is: -1. Round 5: You could get 9 points. The sum is: 8. Round 6: You could get -4 + 9 = 5 points. The sum is 13. Round 7: You could get 9 + 5 = 14 points. The sum is 27.
Note:
The size of the input list will be between 1 and 1000.
Every integer represented in the list will be between -30000 and 30000.
You are given two arrays (without duplicates)nums1 and nums2 where nums1’s elements are subset of nums2. Find all the next greater numbers for nums1‘s elements in the corresponding places of nums2.
The Next Greater Number of a number x in nums1 is the first greater number to its right in nums2. If it does not exist, output -1 for this number.
Example 1:
1 2 3 4 5 6
Input: nums1 = [4,1,2], nums2 = [1,3,4,2]. Output: [-1,3,-1] Explanation: For number 4 in the first array, you cannot find the next greater number for it in the second array, so output -1. For number 1 in the first array, the next greater number for it in the second array is 3. For number 2 in the first array, there is no next greater number for it in the second array, so output -1.
**Example 2:**
1 2 3 4 5
Input: nums1 = [2,4], nums2 = [1,2,3,4]. Output: [3,-1] Explanation: For number 2 in the first array, the next greater number for it in the second array is 3. For number 4 in the first array, there is no next greater number for it in the second array, so output -1.
**Note:**
1. All elements in `nums1` and `nums2` are unique.
2. The length of both `nums1` and `nums2` would not exceed 1000.